
CPSC 542G - Project

by

Edoardo A. Dominici

August 2020

CPSC 542G - Project 1

Introduction

For this project I implemented the image retargeting algorithm as described in [1],

focusing mostly on solving the resulting constrained quadratic program. Starting from

a simplified version with only equality constraints, I experimented with a couple of

different approaches and then moved on to add the inequality constraints. I am reporting

here the findings.

Model overview

This section contains a quick overview of the problem, mostly in order to make sense of

the notation used. For any other details see [1].

The problem faced is that of image retargeting, when rescaling a two-dimensional image

of source width W and height H and destination width W ′ and height H ′, we wish to

find a transformation for the pixels such that the resulting image preserves the salient

region of the image. Such regions are represented by a saliency map of dimension WxH

which is the only input supplied.

The approach followed is that presented in [1], where they cast it as an energy minimiza-

tion problem over a MxN mesh placed over the image. We optimize M + N variables

which respectively represent the width and height of the mesh cells. This makes the

transformation inherently axis-aligned. Two energies are discussed in the paper: ARAP

(As Rigid As Possible) and ASAP (As Similar As Possible). The former tries penalizes

uniform and non-uniform scaling and the latter just non-uniform scaling. Laplacian

regularization can also be added to the system, which favors homogeneous scaling.

The size of the model is usually not very big, grids as coarse as 25x25 and 50x50 produce

near indistinguishable results from higher resolutions and the energies can be written in

the quadratic form:

minx xTQx + xT q (1)

Which need to be subject to some equality constraints:

M∑
i=0

xi = W ′
M+N∑
i=M

xi = H ′ (2)

Inequality constraints can also be used to prevent xi from going below a certain L.

Optimizing without any inequality constraint can incur the risk of the variables having

negative values. This appeared only for extreme deformations without any form of

CPSC 542G - Project 2

regularization, it converged to the positive solution in most other cases.

xi > Li ∀i ∈ [0 .. K) where K = M +N (3)

The constraints can also be written in matrix form as

Aex = be

Aix ≤ bi
(4)

Ae has dimension (2, (N + M)) and is zero everywhere expect for A1i 1 ≤ i ≤ N and

A2i N ≤ i ≤ (N +M). Ai = −I, bi = −L and be = [W ′ H ′]T .

Minimizing non-uniform scaling means penalizing the difference between height and

width of each cell.

EASAP =

M−1∑
i=0

M+N−2∑
j=M

Ωi,j(fwxi − fhxj)2 (5)

Where fw and fh take care of normalizing the aspect ratio and Ω is the input saliency

integrated in the MxN grid. We can see that Q is symmetric and also positive-definite,

this really simplifies the problem by making it convex.

The Laplacian regularization term penalizes differences in size between neighboring cells.

Elapl =
M−2∑
i=0

fw(xi − xi+1)
2 +

N−2∑
i=M

fh(xi − xi+1)
2 (6)

We can simply add this term to the energy being minimized with a blend factor Wlapl.

The results shown in the document minimize the As-Similar-As-Possible energy with an

added Laplacian regularization term E = EASAP + WlaplElapl. The weights used for

Wlapl are different than those in the paper, as I found those way too strong to produce

meaningful deformations.

Figure 1: Non-zero structure for Q for ASAP energy.

The input saliency map used for all the presented results marks the top-right quadrant

of the image to have maximum importance while the remaining pixels have 0, it is a

very unnatural saliency map, but allows for quick visual debugging of the results. The

input resolution is 2000x2000.

CPSC 542G - Project 3

Figure 2: Non-zero structure for Q for ASAP energy and Laplacian regularization.

Figure 3: Input saliency map

Solving the KKT system

I started by initially ignoring the inequality constraints and trying to solve the equality-

only version of the problem. While this in theory simplifies the problem, it makes the

solution finding less reliable as the function can now have multiple minimizers. xTQx

is not guaranteed to be non-negative anymore since we allow for negative x values. In

practice, this did not seem to be a particular problem and appeared only for extreme

deformations without any form of regularization.

When minimizing a non-linear function under equality and inequality constraints it’s

common to start from the first-order necessary conditions for x to be a local minimizer

of a non-linear function (Karush-Kuhn-Tucker). If x∗ is a local solution of f(x) under a

set of equality constraints ce(x), given that both functions are differentiable, there exist

a Lagrange multiplier λ∗ such that the following conditions are satisfied at (x∗, λ∗):

∇L(x∗, λ∗) = 0

ce(x
∗) = 0

(7)

Where L is the Lagrangian of f(x)

L(x∗, λ∗) = f(x)−
∑
i∈E

λici(x) (8)

We can find the minimum of the function by solving for the KKT system as described in

equation 7, using the same notation as in the model description we obtain the following

linear system:

CPSC 542G - Project 4

[
Q −AT

e

Ae 0

] [
x∗

λ∗

]
=

[
−q
be

]

We can also express it in an iterative form by setting x+ p = x∗, which yields

[
Q AT

e

Ae 0

] [
p

λ∗

]
=

[
q +Qx

Aex− be

]

Given the size of the problem, the system above can be solved directly and any naive

algorithm is quick enough. Although the system is presented in its iterative form, one

step is enough to have a solution with enough (1e−12) accuracy.

Some of the results and numbers are shown in the pictures below 11 for a mesh of

10x10, I am using quite different values for Wlapl from the ones reported in the paper,

but similar results are obtained. Although I did not numerically compare the solutions.

The choice of a feasible or unfeasible starting point does not influence the solution

Figure 4: Equality-only retargeting result solving the KKT system.

finding.

Penalty method

Another common approach to handing constraints when minimizing functions is the use

of penalty functions. Instead of trying to minimize f(x) under ce(x) constraints, we look

for the minimum of the unconstrained function

minx f̃(x) = f(x) + βg(ce(x)) (9)

CPSC 542G - Project 5

Figure 5: Equality-only iterations. It takes 2 since the step norm is also used as
termination.

Where an artificial penalty β is introduced for violating the constraints, which weights a

penalty function g(f(x)). By minimizing this function with a large β we hope to obtain

a solution which minimizes the original function while satisfying the equality constraints

(The contribution of the added term is 0). As we want to greatly penalize any constraint

violation, a common loss function which allows for a nice derivation is the quadratic loss

g(x) =
1

2
|Aex− be|2 (10)

We can now rewrite f̃(x) in matrix form and simplify:

f̃(x) =
1

2
xTQx+ qTx+

β

2
(Aex− be)T (Aex− be)

=
1

2
xTQx+ qTx+

β

2
(xTAT

e Aex− 2AT
e be + k)

=
1

2
(xTQx+ qTx+ βAT

e Ae) + (q − βAT
e be) + k

(11)

To find the minimum we set ∇f̃(x) = 0

∇f̃(x) = 0

(Q+ βAT
e Ae)x+ (q − βAT

e be) = 0
(12)

It can also be written in its iterative version. It is interesting to notice that the starting

point does matter here. Retargeting to the same resolution as in the previous method

converges when starting from a more feasible solution, but finds a different negative

minimizer x ≥ 0 when starting from a unfeasible solution. The number of iterations

required to achieve 1e−12 precision is around 4.

CPSC 542G - Project 6

Figure 6: Equality-only retargeting result using penalty functions.

Figure 7: Equality-only iterations using penalty functions.

Adding Inequality Constraints

In order to always obtain valid solutions we need to enforce inequality constraints. As

we transformed the equality constraints into penalty functions, we can do the same for

inequality constraints, and minimize

minx f̃(x) = f(x) + βg(ce(x)) + γg(ci(x)) (13)

The inequalities Aix ≥ L prevent the xi to go below a certain minimum size Li:

∀i xi ≥ Li. Although from γg(ci(x)), we want the same behavior as from βg(ce(x))

CPSC 542G - Project 7

the inequalities require us to take an iterative approach in order to guarantee an ac-

ceptable solution. The inequality constrains are to be carefully activated only for those

variables which are violating them. When all the constraints are active Ai is a negative

identity matrix (See the first section).

g(ce(x)) = max(0,−x+ L)2 (14)

From an implementation perspective the use of max() requires a per-variable evaluation

to check if it’s inside or outside the valid solution space. This is achieved by updating

the inequality constraints matrix Ai with a 0 at position (i, i) when the constraint is not

violated or a 1 in case it is. We can then write

f̃(x) =
1

2
xTQx+ qTx+

β

2
(Aex− be)T (Aex− be)

γ

2
(−Aix+ L)T (−Aix+ L)

=
1

2
xTQx+ qTx+

β

2
(xTAT

e Aex− 2AT
e be + k) +

γ

2
(xTAT

i Aix− 2AT
i L+ k)

=
1

2
(xTQx+ qTx+ βAT

e Ae + γAT
i Ai) + (q − βAT

e be − γAT
i L) + k

(15)

Taking the gradient and setting it to 0

∇f̃(x) = 0

(Q+ βAT
e Ae + γAT

i Ai)x+ (q − βAT
e be − γAT

i L) = 0
(16)

We can now derive an update step by setting xk+1 = xk + p and rewriting the above

equation. Solving for the update step p follows the direction of the function gradient to

0.

(q − βAT
e be − γAT

i L)p = q + βAT b+ γAT
i L− (Gx+ βAT

e Ax+ γAT
i Ax) (17)

One of the main problem faced when implementing the method was the convergence

near the solution, by only using the gradient size as termination criterion instability

occurred which caused the algorithm to run up to the maximum number of iterations.

When x is near x∗ the penalty function causes a big step size if violated, which results

in the termination criterion never being met (jumping around the solution).

Something as simple as reducing the step size as x∗ is approached solved the problem.

Another way is that instead of starting with a very large number for β and γ (Any value

between 1e6 and 1e10 seemed to work well), we can start with lower values and make

the penalty factors exponentially grow. Once the minimum for a fixed β and γ has

been found, the solution is used as a starting point for the next iteration with updated

βk+1 = Kβk and γk+1 = Kγk for K > 1.

Numerical instabilities when working with penalty functions at the last iterations seem

to be a known problem and slowly increasing the penalty factors provided a better

CPSC 542G - Project 8

convergence. The error threshold used as termination criteria is the norm of the step

|∇x|2. Independently from the feasibility of the initial solution, the penalty method in

all the tests converges in around 5-7 iterations to the minimum solution, with starting

values β = γ = 100. When uniform scaling is applied the function appears to converge

very quickly.

Figure 8: Inequality-constrained version solved using penalty functions. Note that
the deformations here are more extreme than the previous examples.

Primal-Dual path following

Optimizing adding a penalty function for the constraints, while converging in 5-7 itera-

tions, is not a particularly sophisticated method. The problem is question might not be

a good benchmark given its simplicity, but there are faster and more elegant approaches

to handle constrained optimization. One such family is the Interior-Point methods, they

can have feasible or unfeasible starting guesses and converge to the solution without

lying on the boundary between the feasible and unfeasible regions, which avoid spurious

solutions solving the KKT system, but not satisfying x, s ≥ 0. They are called Interior-

Point as they remain inside the starting feasibility region.

CPSC 542G - Project 9

Figure 9: Inequality-constrained iterations using penalty functions. Note that the
deformations here are more extreme than the previous examples.

They are derived from the first order optimality conditions. Given the quadratic pro-

gram as written in the first section, its KKT conditions can be written as

Qx+ q +AT
e z +AT

e y = 0

Aix+ s = bi

Aex = b

zs = 0

s ≥ 0, z ≥ 0

(18)

Since Q is positive definite the above conditions are sufficient and we can solve for

them to find the solution of the quadratic program [2]. The augmented solution vector

X is composed of the grid dimensions x the slack variables s ∈ RN+M added to the

inequalities to transform them into equalities, and the dual variables z ∈ RN+M and

y ∈ R2 associated with the Lagrange-dual problem

minx f(x) + yce(x) + zci(x)

y, z ≥ 0
(19)

CPSC 542G - Project 10

We shall now solve the system of equations 18 by applying Newton’s method and obtain

a search direction by solving J(x, s, z, y)[x s z y]T = −f(x, s, z, y) [3]. The step direction

obtained is often referred to as affine scaling direction.

Fixing µ = 0 and using the derivation as in [2] adding equality constraints we obtain

Q 0 AT

i −AT
e

0 Z S 0

Ai I 0 0

Ae 0 0 0

xaff

saff

zaff

yaff

 =

−(Qx+ q −AT

i z −AT
e y

−Sz
−(Aix− s− bi)
−(Aex− b)

The term µ = xT s

(N+M) can be used as a quality measure for a solution, every step we could

look for a solution point with µk+1 < µk which would make us approach the problem

from the interior of the existing region, avoiding the boundaries. We first calculated the

affine step by fixing mu, we now want to calculate a more gentle step, as we don’t want

to take a full Newton’s step since it could violate x, s ≥ 0.

[2] presents an extension to quadratic optimization of the Mehrotra predictor-corrector

method for linear programming [4], which combines (sums) a centering step and a cor-

rector step. The centering step is the same Newton’s step calculated using the resulting

affine step and a centering parameter σ ∈ [0 1]. Moving along the affine scaling direction

is likely to violate the x, s > 0 constraints and the corrector step direction corrects for

this error by solving for the right hand side [0 0 0 − diag(xaff)saff]. Summing the

steps and adding the equality constraints, we obtain a centering-corrector step of:

Q 0 AT

i −AT
e

0 Z S 0

Ai I 0 0

Ae 0 0 0

xcc

scc

zcc

ycc

 =

−(Qx+ q −AT

i z −AT
e y

−σ − Saffzaff − Sz
−(Aix− s− bi)
−(Aex− b)

The affine step size αaff and centering parameter σ are calculated as in [2]. Finally, the

current solution can be advanced forward by following Xk+1 = Xk + α∇X where alpha

is the maximum real ∈ [0 1] that mantains the non-negativity of z and s.

∇X = ∇Xaff +∇Xcc

α = min{α ≥ 0|s+∇s ≥ 0, z +∇z ≥ 0}
(20)

The above systems can likely be simplified and made symmetric, which would be very

important for efficient decomposition when solving bigger systems. The current imple-

mentation solves them fully without any particular treatment. The error is calculated as

the maximum between the duality gap, the equality constraint residual |−Ae + be|2 and

CPSC 542G - Project 11

the inequality residual ||−Aix−s+bi||. The last two converge to 0 almost immediately,

while the difference between the primal and dual solution is more carefully reduced to 0.

This causes the average number of iterations required to converge with accuracy 1e−10

to be around 10, which is much higher than the previous penalty methods.

Figure 10: Inequality-constrained version solved using a primal-dual path-following
algorithm.

CPSC 542G - Project 12

Figure 11: Inequality-constrained iterations using a primal-dual path-following algo-
rithm.

Conclusion

All the algorithms implemented converged to a feasible solution in a limited number of

iterations. The penalty methods proved to be more unstable, but very well performing.

Each step of the iterative penalty method is less costly than the Interior-Point alternative

since we are just solving an (N + M) by (N + M) linear system. On the other hand,

moving along the Primal-Dual path while avoiding region boundaries provides a very

elegant convergence, which also does not ”jump” between the feasible and unfeasible

region like the exterior penalty method does. As the size of the system does not weight

in favor of the unconstrained approach I would choose the Interior-Point method for a

final implementation.

The code for the solvers and used to generate the pictures is attached. I have used

Eigen’s linear algebra routines and all the resulting linear systems are solved using LU

decomposition with pivoting as exposed by Eigen::FullPivLU.

Bibliography

[1] Daniele Panozzo, Ofir Weber, and Olga Sorkine. Robust image retargeting via axis-

aligned deformation. Comput. Graph. Forum, 31(2pt1):229–236, May 2012. ISSN

0167-7055. doi: 10.1111/j.1467-8659.2012.03001.x. URL http://dx.doi.org/10.

1111/j.1467-8659.2012.03001.x.

[2] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York,

NY, USA, second edition, 2006.

[3] U.M. Ascher and C. Greif. A First Course on Numerical Methods. Computational

Science and Engineering. Society for Industrial and Applied Mathematics, 2011.

ISBN 9780898719970. URL https://books.google.ca/books?id=eGDMSIqPYdYC.

[4] E.D. Andersen, C. Roos, and T. Terlaky. On implementing a primal-dual interior-

point method for conic quadratic optimization. Mathematical Programming, 95(2):

249–277, Feb 2003. ISSN 1436-4646. doi: 10.1007/s10107-002-0349-3. URL https:

//doi.org/10.1007/s10107-002-0349-3.

13

http://dx.doi.org/10.1111/j.1467-8659.2012.03001.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03001.x
https://books.google.ca/books?id=eGDMSIqPYdYC
https://doi.org/10.1007/s10107-002-0349-3
https://doi.org/10.1007/s10107-002-0349-3

	Bibliography

