
UNIVERSITY OF PISA

DEPARTMENT OF COMPUTER SCIENCE

PRACTICAL IMAGE RETARGETING IN

WEB PAGES

Author: Edoardo Alberto Dominici

In collaboration with: Prof. Marco Tarini

Supervisor: Prof. Antonio Cisternino

December 2016

Abstract

Many different retargeting solutions have been proposed in the past
years for all different kind of media and especially for images. While
they are somehow integrated in software editing packages, their use in
more consumer oriented applications such as web browser is extremely
limited if not non-existent. We propose a completely open-source and
almost transparent frontend implementation for browsers that allows for
images to be dynamically retargeted, thus giving the frontend developers
the power to create truly fluid layouts without the current constraints of
images’ aspect ratio. It is based upon a robust, yet simple and performing
state-of-the-art retargeting algorithm which is used in an initial step in
order to enrich images with custom metadata that is later interpolated by
the frontend Javascript library to effectively do content-aware retargeting.
As algorithms have gotten incrementally more efficient, both memory and
time wise, we think they are ready to be used in production and web pages
are the perfect testing ground. The project is completely open source and
hosted on Github: github.com/sparkon/retarget

1

''https://github.com/sparkon/retarget''

This is dedicated to Aramis.

Contents

1 Retargeting of visual media 4
1.1 Different types of retargeting . 4
1.2 Images . 5
1.3 Current direction and state of the art 7

2 Axis-aligned image retargeting 9
2.1 Introduction . 9
2.2 Inner workings . 9
2.3 Energy systems . 11
2.4 Why and how we used it . 13

3 Implementation 14
3.1 Approaches . 14
3.2 Backend: retarget-lib . 15
3.3 Backend: retarget-make . 17
3.4 Frontend: retarget-js . 17

4 Tools and Workflow 21

5 Conclusions and further improvements 27

3

1 Retargeting of visual media

1.1 Different types of retargeting

Due to today’s extreme variety in reproduction technologies the need for retar-
geting different kinds of visual media has risen and such techniques are increas-
ingly more integrated in modern software. Even though the most known field
of retargeting is indeed imaging, adapting a media designed with a specific re-
production device in mind to a destination device with different characteristics,
while preserving as much as possible its properties, is a problem that can be
found in many different fields.

Examples include 3D modeling where a complex scene can be divided into
components so that structural properties such as simmetry and regularity can
be exploited to aid the retargeting transformation in preserving connectivity
components[14]. Another interesting field of application that is more and more
relevant today is inside toolchains for procedurally generated content. Where
the computer cannot produce pleasant results the human’s hand usually comes
into play but, in order not to create content for all the possible, sometimes
infinite, generated resources, some kind of retargeting has to take place, where
the general purpose data is applied to the randomly generated one. One pro-
duction ready example of such technologies is the one behind Spores [3], where
the player is able to create custom animal morphologies and each one of them
has different challenges when it comes to animations. Even though the con-
tent is not directly generated by a CPU, there are no real constraints on what
can be achieved and the creation of all the possible key-framed animations for
the different morphologies is unfeasible. All of the above has to be done while
maintaining professional level quality. Spore’s developers [3] answer to this
problem in a two-step retargeting work flow, by having the animators generate
semantic data in a first generalized form, that is then subsequently specialized
(retargeted) at user’s creation time.

The aforementioned techniques are extremely useful in real-world scenarios
but they have the inherited advantage that, for the most part, they are not
real-time and processing is allowed not to be instantaneous. Obviously the tim-
ing may vary and it still has to be reasonable for rapid development iterations
and usability, but there is no hard upper limit on the processing time. Con-
tinuous media such as videos unfortunately have that. Although not spread
in consumers’ video players [KLHG09][7] proposed a GPU-accelerated system
to retarget streaming videos that relies on multiple content analyzation post
processing detection techniques for saliency, edges and motions to generate a
non axis-aligned warp grid that can be applied to the input image in order to
generate the output stream at the desired resolution. The motivation behind it
is that resolution adaptation might not suffice in certain types of scenes, espe-
cially in small size displays [1]. Another example of retargeting that applies 2D
motions to different shapes is presented in [RG08][4], that differs by shape-based
cartoon motion captures techniques and presents a transform-based approach
that is then retargeted preserving the visual style.

4

As it can be seen retargeting is quite a general term that is applied in
different contexts with different scopes, and might not always be referred as
such. The other important field where retargeting is critical is imaging. As
it is the focus of this thesis we will now present a general overview of image
retargeting and its current standard. Subsequently we will provide a practical
example of how relatively modern techniques can be used on today’s hardware
to enrich end-user’s experience.

1.2 Images

As suggested in 1.1 retargeting is the process of adapting a source media, for
what concerns us a 2D image, designed with a certain display in mind, to a des-
tination display with different specifications. Characteristics vary and include,
but are not limited to dynamic range, gamut, resolution and refresh rate. [BAA
et al.][10] presents an overview of different retargeting techniques that address
the lack or presence of the aforementioned features. With the sheer number
of different devices being sold today from ultra-high-definition televisions to
low end phone displays in portrait mode, the dynamic resolution problem is
prevailing.

The usual approach to retargeting an image starts with the source image
in its original resolution and is followed by the generation of an importance
map, that can be automatically created starting with simple edge detection
or using non context-aware techniques [11] that rely on histogram-based con-
trast detection, up until algorithms who are specifically designed to identify
the predominant objects and their surrounding context in the scene [12]. The
importance map is a general term that encompasses different characteristic, an-
other term that has a more precise definition is saliency. While the latter could
be considered a subset of the former, there terms are often used interchange-
ably. Koch and Ullman in ”Shifts in selective visual attention. Towards the
underlying neural circuitry” defined saliency at a given location as the differ-
ence of that location from its surround in color, orientation, motion, depth, etc..
From now on we will mostly use saliency but we will be specific in case there
is a different meaning to it. There is an abundant number of saliency detection
techniques that may suit different kind of images. This system has the two
inherited advantages: being modular and being offline. The former refers to the
fact that the retargeting operation itself is decoupled from the saliency detec-
tion, meaning that different systems can be plugged in on a per-image basis.
The latter is that the saliency map can be created once prior to the retargeting
itself, thus more advanced and time consuming techniques can be used. Until
now we have assumed no human interaction, but the automated generation can
be only the initial step after which the artist finishes the job by tweaking the
image in the zones where the algorithm fails. Additional parameters can be
provided depending on the retargeting function in use.

For the retarget function many different approaches exists, but for the most
part they can be grouped in:

5

Figure 1: Seam-carving in action. From left to right, input image with initial
seams, maps driving the algorithm and the final result compared to what would
happen without retargeting [2].

• Pixel-based

• Mesh-based warping

Before moving on and introducing the different techniques a note has to be made
clear. Retargeting is a process that is strictly correlated with aspect ratio, not
resolution, meaning that up-scaling or down-scaling an image maintaining its
original aspect ratio is a straightforward process, as no stretching occurs. Before
moving on some terminology has to be defined:

• Image: 2D array of pixels containing color data in some color space. Re-
targeting is usually well suited for photographic images, not logos, nor
vector art.

• Content : Set of regions of interest (ROI) for an image. Photographic
images are often identified by one or more focus subjects that are not
necessarily people, but any relevant object in the picture’s context. All the
subjects are from now on referred to as objects and are vital for retargeting
as their importance in the scene is what guides the process itself. It is
clear that retargeting might not work extremely well for certain images,
such as landscapes, where no specific objects can be identified. An object
is generally referred to as region of interest but, for the purpose of this
overview, they have the same meaning.

• Energy is a loose term that varies depending on the context: in its general
form is a mean of describing the amount of information. Thus ”minimizing
the energy change” means trying to avoid information loss as much as
possible when operating on the image.

Finally, if not specified all the following algorithms assume an input im-
portance map and optional human input. Suppose that the destination image
height is less than the source image, the most näıve approach would be to dis-
card those pixels that are not important in the context of the scene, this is what
cropping revolves around. In its most basic form it simply drops entire rows
and columns of pixels from the border while trying to keep the overall saliency

6

value of the resulting image as high as possible. Thus column 0 is dropped over
column width-1, because it contains more object’s data. Although it might not
seem to produce pleasant results, allowing the retarget function to drop any
continuous line of pixels in the image dramatically improves the output. Seam
carving [2] does exactly this, using dynamic programming a vertical and an
horizontal seam are chosen every iteration protecting the content of the image,
thus avoiding objects and minimizing local energy dispersion. Subsequently pix-
els are either dropped or duplicated depending on the destination’s resolution
(Figure 1). Improvements on the paper, such as [5] proposed to choose pixels
whose removal reintroduce the least amount of energy in the whole system.

While the previous cropping based image techniques have one single output
image, there are interesting derivatives of rapid serial visual presentation(RSVP)
who propose to simply extract the objects and display them sequentially. The
trade-off here is between an obvious improvement in the image quality, as no
stretching occurs, with the time and learning drawbacks. Once all the objects
are separated they can also be merged together by introducing seams in a non
photo realistic manner [1].

Unfortunately all of these techniques suffer from the complete loss of data af-
ter the operator is applied, mesh based approaches overcome this aspect by pre-
serving almost all data, objects and their context. They work by either placing
a fixed mesh over the image, or computing one from the image and non-linearly
distorting the vertexes based on the input importance map, as the vertexes
maintain their original texture coordinates sampling from them after they have
been displaced produces the distorsion. Computing the distortion is essentially
a non-linear optimization problem, but clever ways have been found to work
around that problem. [6] allows all the regions in the image to absorb the dis-
tortion, and even if the resulting optimization problem is non-linear, it iterates
over the linear minimization problem of determining the per-quad transforma-
tions with fixed constraints until a certain threshold has been reached. Another
grid based approach that will be thoroughly discussed in the next section is the
one proposed in [13] that places a low res grid over the source image and simpli-
fies the problem by allowing only axis-aligned transformations. This renders the
system a convex quadratic programming problem that can be efficiently solved.
For a more detailed overview [10] provides a in-depth review of the evolution of
image retargeting techniques up 2010.

While this section is not as in-depth as the aforementioned review, it wants
to roughly introduce what image retargeting techniques are based on, and how
constraining and simplifying the problem does not mean a reduction in quality
but it does allow a potential use in more responsive user applications.

1.3 Current direction and state of the art

Browsers and thus web pages can be considered the major consumers of images
and as it currently stands there is no real context-aware retargeting happening.
Some tricks are used to try and preserve some image quality [15], especially
when downscaling and pixels are lost, but they have no notion of what the

7

image contains. For this very reason modern web pages with fluid layouts try
to preserve the aspect ratio of the source image by any means. This has the
clear advantage that the image can be used as it is, but it creates an obvious
discrepancy with the rest of the content. While text, divs and other HTML
elements can be resized at will without any ratio constraint, images do have
that and often force their containers to scale accordingly. The implementation
based on the algorithm explained in the following section addresses this exact
problem, by not forcing any aspect ratio on images and thus making them
act homogeneously as all the other elements. This enables frontend developers
to take advantage of it and design web pages that are truly fluid. Modern
retargeting techniques combined with the vast support for hardware accelerated
rendering (WebGL) in browsers make this the perfect time to show how real-
time image retargeting can be part of everyone browser experience.

8

2 Axis-aligned image retargeting

2.1 Introduction

We will now present the retargeting algorithm that has been used as backend for
the implementation. More reasons why it has been picked over the alternatives
are discussed in 2.4. The technique will be explained carefully for the subjects
that interest us, the paper [PWS12][13] also goes further in describing additional
features that have not been considered for the current implementation. A mesh-
based retargeting solution is proposed that only allows axis-aligned deformations
to be performed in the retarget function. This reduces the possibility of certain
rotations or displacements that are detrimental for the image to take place.
Having 1D transformations, as they are separated between the horizontal as
vertical cells, limits the possible retargeting scenario, but simplifies the system
to a quadratic convex optimization problem, while at the same time providing
good enough results (Figure 2).

The space of axis-aligned deformations is the
appropriate space for content-aware image
retargeting.[13]

It seats in a sweet spot where on one hand it is perfectly usable as a real
time solution and on the other it does not suffer from imperfections caused by
fast or partial computation of other approaches.

2.2 Inner workings

As previously mentioned the problem of deforming an image accounting exclu-
sively for axis-aligned transformation can be casted to a quadratic program that
is linear in the size of the grid used for deforming. As with most mesh-based
retargeting techniques the process is driven by a energy equation that evaluates
the transformations to be applied based of an input saliency map. Some algo-
rithms strive to minimize the local energy changes, while others account for it
globally.

The main issue with earlier image warping techniques is that they would ei-
ther be extremely efficient by using linear energy systems, but be very prone to
artifacts in the final output, or overcome the artifact issue by over-complicating
the energy system itself to account for border cases. Interesting approaches
like [FCK et al.][9] get extremely close to a valid solution by formally prevent-
ing foldovers and describing a globally optimizable energy function based on
quadratic programming formulation. It also strives for axis-alignment by try-
ing to preserve straight lines by penalizing certain kind of deformations. The
downside is that if too many constraints on the energy equation are posed it
can turn out to be infeasible, in that case those constraints have to softened.

Another approach that strongly indicates having straight line as a benefit is
[WTSL08][6] that approaches the problem by dividing the input in regions and

9

Figure 2: Axis-aligned retargeting in action given an input saliency map[13].

allowing important regions to scale respecting the original aspect ratio, while
unimportant regions can stretch, that is why it is referred to as ”Scale and
Stretch”. No constraints in the energy system guarantee lines to be straight,
but they say how it does benefit the system.

Seeing how axis-aligned was a good property of the system [PWS12][13] de-
cided to approach the problem directly from that side by limiting the space
of transformation exclusively to axis aligned. The algorithm given an image
with dimensions W and H, respectively width and height, computes a deformed
grid where cells are W/N and H/M pixels in width and height for a destina-
tion image with dimensions W ′ and H ′. The deformations is represented as
a one-dimensional array of unknown width and height (s = srows, scols) where∑
srows = W ′ and

∑
scols = H ′. The objective function is described as:

sTQs + sT b (1)

While the constraints of the system are:

srows
i ≥ Lh, 1 ≤ i ≤M (2)

scolsj ≥ Lw, 1 ≤ j ≤ N (3)

srows
1 + ...+ srows

M = H ′ (4)

scols1 + ...+ scolsN = W ′ (5)

10

2 and 3 by giving a lower boundary to the deformations are also guaranteeing
that no fold-overs will happen as vertexes cannot have negative deformations,
thus grids cannot overlap one another. Lh and Lw define the minimum possible
size in pixels of a cell, an example value could be 0.15. 4 and 5 formally fix
the resolution of the destination image, thus making sure that the deformations
does not overflow the boundaries. The objective matrices are guided by the
energy system, in detail: Q ∈ R(M+N)x(M+N) and b ∈ RM+N . When working
with optimization problems there are different possible relationships between
the constraint region and the objective function:

• Infeasible is when the constraint set cannot be satisfied, thus no solution
exists.

• Feasible is when we have at least one set of values that satisfies all of the
constraints.

• Unbounded is when the constraint region is unbounded, thus for each so-
lution it always exists another set of values that outperforms the previous.

In order to mantain the QP feasible there is only the need for Lh ≤ H ′/M
and Lw ≤ W ′/N . With these relationships in mind we can be sure that the
objective function is finite in the feasible region. As we can see the problem
just formulated is indeed a quadratic programming one as all the constraints
are linear and the objective function is made of a symmetric matrix Q and a
linear cost function b. While quadratic programming a special case of non-linear
programming it is still very hard to solve especially in real-time scenarios, that
is why we need to make sure that our objective function is convex. If that is
guaranteed it can be solved as a convex optimization problem that greatly sim-
plifies but more importantly makes more efficient the optimization. A function
f : S 7→ R is defined as such if:

∀(x, y) ∈ S,∀t ∈ [0, 1]f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

This means that a local minimum of the function is necessarily the global mini-
mum, and the problem boils down to finding the local minimum. In the context
of QP programming we can make sure that the objective function is convex if Q
is semi-definite, this is guaranteed by the different energy systems. Once all of
this is set up very efficient convex optimizers can be used to solve the problem
in real-time.

2.3 Energy systems

The paper[13] proposed two energy systems that are not extremely different and
whose results can also be linearly interpolated. Given Ω ∈ RM ·N as saliency
map they are:

• ASAP (As-Similar-As-Possible) as seen in [8]. The version proposed is a
simplification of the original one as the set of transformation is reduced.

11

The idea behind the original was the creation of similarity constraints
that would reduce the deformations in important regions, which should
be homogeneously scaled, by dispersing distortions in other less important
parts of the image. The mesh contains control points who are grouped into
handles, where each handle can be contained in different control points.
Edges correspond to image features that have to be distorted as little as
possible. The energy for the patch P− > P ′ is then calculated as[8]:

ε(P, P ′) = mins∈S

m∑
i=1

|s(pi)− p′i|2

Where S is the set of similarity transformations [8]. Removing the need
for rotation the similarity transformations are just scale and translation,
the objective is thus to minimize non-uniform scaling [13], making the
energy equation[13]:

gridx = M/H

gridy = N/W

εASAP =

M∑
i=1

N∑
j=1

(Ωi,j(gridxs
rows
i − gridyscolsj))2 (6)

The K ∈ R(MN)·(M+N) matrix from which we will construct the QP sys-
tem is thus[13]:

r(k) = dk/Ne (7)

c(k) = ((k − 1) mod N) + 1 (8)

Kk,l =

Ωr(k),c(k) · gridx, if l = r(k)

−Ωr(k),c(k) · gridy, if l = M + c(k)

0, otherwise

In order to plug them in in the QP system we have the positive semi-
definite Q = KTK and b = 0.

• ARAP (As-Rigid-As-Possible) While the previous energy system penal-
ized non-uniform scaling ARAP penalizes all non-rigid transformations.
A transformation is defined as non-rigid whenever the distance between
two arbitrary points is changed by the operation itself. In a strictly axis-
aligned context rigid transformations exclude scaling too, leaving us with
just translations. Keeping in mind the definitions for gridx and gridy in
the previous section we have[13]:

εARAP =

M∑
i=1

N∑
j=1

Ω2
i,j((gridxs

rows
i − 1)2 + (gridys

cols
j − 1)2) (9)

12

Using the same definitions for r(k) (7) and c(k) (8) two matrices are
defined Rtop, Rbottom ∈ R(MN)·(M+N) [13]:

Rtop
k,l =

{
Ωr(k),c(k) · gridx, if l = r(k)

0, otherwise

Rbottom
k,l =

{
Ωr(k),c(k) · gridy, if l = M + c(k)

0, otherwise

That are used to to build the QP system as[13]:

Q =

[
Rtop

Rbottom

]T
, b = −2

[
Rtop

Rbottom

] [
v
v

]
where v is the vector of saliency defined as: v ∈ RMN , vk = Ωr(k),c(k).

2.4 Why and how we used it

The limitations imposed by the axis-alignment of the transformations should not
be seen as negative, they actually make the algorithm way more robust for real-
time consumer applications. The worst case scenario is softened, as no damaging
warps or fold-overs can happen. As the technique is very flexible different energy
systems could be used for different images and destination resolutions. For our
purposes and from observations ASAP seemed the best in a general purpose
scenario. This does not prevent us from embedding more and different energy
systems in the future. As said above, the only requirement for the energy system
is to output a Q matrix that is semi-definite, thus rendering the QP problem
convex. Even though [13] proves us that it is feasible to retarget images using
their method in real-time we decided to use it offline solving the system at
different destination aspect ratios. This provided us with a set of spacings for
all the grid cells. Later the real-time retargeting will not need to solve the
system again for a specific aspect ratio, as we probably have already solved it
for an upper and lower bound, this leaves the retargeting application the only
task of interpolating accordingly to the target aspect ratio.

13

3 Implementation

3.1 Approaches

As hinted in the previous section one of the advantages of retargeting using fixed
grid axis-aligned deformations is that the solutions to the system (for different
resolutions) can be computed offline in a fairly efficient manner and results can
be subsequently interpolated. While the offline computation and the choices
made will be explained in detail in subsection 3.2, this chapter will explain the
two approaches that have been evaluated prior to starting the implementation.
Assuming the user has enriched the images with the appropriated metadata and
eventually flagged them as retargetable the actual retarget function could either
take place in one of the following contexts:

• Web Server (Backend) : Extremely wasteful time-wise and bandwidth-
wise to recompute everything and then send the new image on every resize
operation. This has not really be taken into consideration at all.

• Browser’s rendering engine (Frontend) : This would mean that the user
except for providing the enriched images does not have any other control
over the retargeting as it happens inside the rendering engine, be it Gecko
(Mozilla Firefox) or any kind of WebKit flavour (Chromium, Safari and
most of the others browsers). This is likely to be the most efficient solution
as:

– There are no language constraints nor overheads. Even though V8
and SpiderMonkey are extremely optimized (recent LLVM integra-
tions [16]) it is not comparable to native code and we are anyway
subjugated to language limitations.

– Metadata loading, image retargeting and all other operations can
happen before the initial image is displayed and thus the user would
not even notice that additional computations took place.

While the above looks indeed interesting it is not exempt from its share
of issues, especially regarding the implementation in multiple rendering
engines, the non-existent backward compatibility and the opaqueness of
the whole process.

• JavaScript library (FrontEnd) : The other frontend approach is the imple-
mentation of the metadata extraction and retargeting inside a client-side
script. Compared to the in-browser implementation it suffers from:

– Inevitable performance reduction, that is partially hidden by the fact
that everything happens asynchronously.

– Delayed loading, the fact that everything happens while the user is
browsing the page, thus without introducing any loading, still implies
that images are retargeted incrementally with possibly noticeable
popping.

14

– Same-origin policy restrictions. The above two issues are not real con-
straints, but simply degrade the user’s experience. Using JavaScript
you have no access to the raw image data starting from the head-
ers, we then need an additional XMLHttpRequest that falls under the
SOP scope. SOP states that a script loaded from a domain A can
not request resources from a different domain or the very same do-
main with a different port or protocol [17]. Although this looks like
a daunting problem it can be worked around using HTTP Access
Control (CORS) with a small help from the resource’s host.

On the other hand using a JavaScript library has benefits that in certain
scenarios out weight the problems. WebGL is nowadays a de facto stan-
dard and this enables us to fully exploit hardware-accelerated rendering
for image distortion on a canvas without the need for low-performance
HTML hacks. More importantly the purpose behind the whole project
was to give something practical to web developers today. Requiring them
to download a custom browser build (until the eventual pull request would
be merged) or restricting the possible audience only to the last build goes
directly against what we want to achieve.

It is pretty obvious from the above description what decision was made for the
frontend. Using a JavaScript library with the expense of some small degradation
in user’s experience allows us to reach a much wider audience that can get started
immediately with this technology. The following subsections will describe in
detail how each of the components function, while 4 will describe an example
pipeline starting from a non-enriched image up to see its retargeting in your
web page.

3.2 Backend: retarget-lib

Retarget-lib is the backend for all the offline processing utilities that might be
created. This includes, but not limited, to Photoshop plugins, command line
utilities and custom saliency painters. It exposes an extremely simple API

CalculateSpacingsNxN(int src_resolution[2], int dest_resolution[2]
unsigned char input_saliency[], double

output_spacings[]);

EncodeMetadata("src_image", metadata, "output_image");

• CalculateSpacings This routine is responsible for the first part of the pro-
cessing. The user would open their favourite image editing program and
paint a greyscale version of the original image defining the saliency map.
As suggested in previous chapters this step could be automated, yet with
very minimal effort from the designer good results can be achieved with
non pixel perfect saliency maps. For higher resolution grids better results
might be obtained using more fine grained tools. Once the saliency map
has been created it can be exported and ready for use. After the enriching

15

process is done the original saliency texture can be discarded as there is
no more use for it.

Once loaded in memory CalculateSpacings will generate a low resolution
saturated version of the saliency map, where per cell values will be directly
used for the creation of the energy system’s matrices as seen in 2. Once
the matrices for the energy systems have been created, they are packed
and ready to be fed in the quadratic convex optimizer. The additional
parameters used in the QP system such as b are computed based on the
energy system in use. As it currently stands CalculateSpacingsNxN is
limited to a 25x25 grid and ASAP energy system. This can be easily, and
will in future versions, extended to support different parameters.

ASAP has been chosen because it seemed the system that yielded better
results overall, this does not mean that other systems such as ARAP or
hybrid versions perform worse, but we felt like they can have different
usage scenarios. One very good advantage of this offline process is that
every image can be retargeted using different parameters that best suit
the needs of the contents, as what we are interested in exporting are the
results of the computation. CalculateSpacings solves a single system for
a single destination resolution. Depending on the needs of the web page
and the image a different number of aspect ratios should be exported.

• EncodeMetadata Once a sufficient number of spacings has been calculated
it is time to embed them as XMP metadata. XMP is a standardized
file labeling technology created by Adobe that allows the user to embed
metadata in most of existent image formats[18]. It has been chosen over
custom approaches or EXIF because:

– It is extensively used in all Adobe products and widely used out-
side the Adobe ecosystem to communicate non-pixel data between
different applications.

– Integrates very well with the Adobe suite of products as different
SDKs are provided for different application. Thus writing a Photo-
shop plugin would boil down to writing glue code for retarget-lib.

– Is not limited to a single format, but supports many different includ-
ing, but not limited to PNG, JPEG and RIFF.

– Metadata is encoded in plain text XML, thus decoding it from the
Javascript script does not require any external library. Although not
endorsed, it is considered valid to manually look for specific tags in
a text view of the binary file. Once all the different pieces (as they
are scattered throughout the file) have been found and merged a
DOMParser can be used to interpret its content.

Plain-text XML does have some space overheads, but our metadata re-
quirements are very low. The exported Metadata is divided into Meta-
dataEntries each one contains W + H floats where W and H are respec-
tively the number of cells in a row and number of cells in a coloumn.

16

Floating point numbers are not required and can be easily normalized as
we know the minimum and maximum value a cell can have for each Meta-
dataEntry. From 4 or 8 bytes we can reduce down to 2 bytes plus the
storage for the normalization factor for each entry. Note how a cell has a
lower hard-coded boundary and an upper boundary that is the destination
width or height minus the lower bound times all the remaining cells, in
formulas:

cell ∈ R2

cell ∈ [(a1, a2), (b1, b2)]

a1 = b1 = 0.15

a2 = destw − (cellsx − 1) · a1
b2 = desth − (cellsy − 1) · b1

Additional compression could be done, but as the number of aspect ratios
exported is usually not high, good results can be achieved with as few as
10 different aspect ratios.

3.3 Backend: retarget-make

retarget-make is a simple tool created in order to show how easy it is to create
custom utilities to generate and encode metadata using retarget-lib and an input
saliency map. The process is very straightfoward and follows the guidelines
described in the previous subsection. Loads a saliency image, scans for it is
first channel and generates a byte array containing the saliency that is then fed
into retarget-lib at different resolutions to generate some metadata.Additional
parameters will include the output resolutions to be exported and flags reflecting
what the internal retarget-lib exposes.

3.4 Frontend: retarget-js

The javascript library is the core of the project as given a web page retargets
all the images that have metadata in them. While some of the steps are indeed
trivial other presents interesting quirks worth going over. Overall the process
follows this flow:

• Finding images and metadata extraction The retargeting script registers
itself for DOMContentLoaded event to start finding valid images as soon as
possible. The advantage over the standard load event is that we does not
wait for resources such as stylesheets, images or frames to load [19]. All the
img tags in the loaded DOM are then scanned. By default all the images
are scanned for retargeting metadata. Scanning can be explicitly stopped
by setting data-retarget="false" as the img attribute. The attribute has
that specific name because the HTML5 standard requires custom XML
attributes to prepend data- to identify them as such.

17

Using simply retarget will probably work across most of the browsers with-
out any problem as most of the errors and warnings are suppressed by
browsers, but is not really future-proof. Now the image’s original raw
data, not just pixels, is scanned for XMP packets, as the packets are
nothing else than standard XML tags, the different initial and end tags
are found. Then the sub-strings are extracted from the image and fed into
the DOMParser for easier processing as XMP makes heavy use of XML
namespaces.

In 3.1 we have mentioned how SOP is a major limiting factor. This is
where we can feel it in action. In order to extract metadata we can not
just use the raw pixels of the image, we need the whole data, starting from
the header. Unfortunately JavaScript and the underlying browser APIs
give us no access at all to those images. This means that we manually have
to download them again. This is the major bottleneck of the client-side
JavaScript implementation, as in order to GET request them we need to
make an XMLHttpRequest that is subject to the same-origin policy. The
obvious additional drawback is the double download of the image. For
today’s standards is not really a problem, it might only cause issues on
mobile networks with limited data plans. Unfortunately we have found no
workaround for that, the best case scenario would be to propose a window
API that would allow us to retrieve image’s metadata.

The metadata extractor follows the format specified in the first part of
the XMP standard. Metadata is contained inside a so called packet, that
can be looked for based on specific start and end tag, respectively <?

xpacket begin= and <?xpacket end=. Even though most of the metadata
is always contained in this first region, in some scenarios extra data is
contained in other regions that are not enclosed in packets (Section 2.1.3.1
of the standard). Their are fundamentally stripped versions enclosed in <x

:xmpmeta> tags, those are scanned aswell for additional data. The XML is
pretty standard and there is nothing special to it, the XMP documentation
can be consulted for more information.

The only additional issue encountered was the incompatibility between the
DOMParser and the utf-8 encoded XML, as the latter has some characters
that need to be removed before being serialized or deserialized. This is
avoided by doing a sanitation pass on the input XML. The retarget-js
library is completely independent from the grid’s size, the current 25x25
limitation is due to the encoding process.

• Initialization and replacement The download and metadata extraction
does not stop the user from viewing the web page as the page’s elements
have not been touched yet. Now it is time to initialize a WebGL context.
As every image will be replaced with a canvas there will be one context
for each retargeted image. Initialization of resources, shader compilation,
uploading of texture data takes some time and it is done in a canvas not
appended to the document, thus not displayed. In theory some time could

18

be saved by sharing shaders and common states between the contexts, but
the complexity overhead of multiple shared contexts does not justify the
potentially negligible memory footprint. A WebGL 1.0 context is limited
to a OpenGL ES 2.0 feature level, basically a programmable pipeline with-
out geometry, compute or tesselation shaders, but it is perfectly fine for
our needs.

Having full real-time retargeting in the browser using GPGPU without any
offline postprocessing could be interesting, yet the only real benefit would
be a slight improvement in image quality. After all the GPU resources
have been created and uploaded the original image is hidden by changing
its visibility property and the canvas is inserted after the source image’s
element. There are many small tricks that can be used to optimize this,
but in the end, as we will see in 3.4, they are not generally worth it and
possibly even degrading.

• Updating and Rendering For real-time applications rendering in WebGL
the setInterval(ms_interval, callback) API is used to request the render
() function to be called a certain amount of times every second. For our
purposes this would be an extreme waste of resources as retargeting has
to only be done once every time the image is resized. We do this by reg-
istering the retarget function to the window.onResize() event on which we
appropriately resize the backbuffer, the viewport and proceed rendering
the image. This means that scrolling the web page will not trigger the
resize event, thus having no overhead. The rendering and image distor-
tion is pretty straightforward. It works by generating a 25x25 grid with
respective vertex and index buffer. The input layout for each vertex is
comprised of a screen space position and a non-distorted texture coordi-
nate calculated as follows:

uvxy = tuple(posx/(gridcellsx − 1), posy/(gridcellsy − 1))

Texture coordinates are constant and always remain the same, what is
modified is the position of each vertex that then is sampled using the
original uv coordinate, thus creating the distortion. The last step is going
from the offline calculated spacings for a different number of fixed reso-
lutions to the NDC for the specific resolution. This is done in two steps.
First we find the two wrapping aspect ratio for the destination one. If this
falls out of range then lower and the upper bound point to the same aspect
ratio that is the closest to the set currently in use. Once they have been
found interpolation occurs. Since we are dealing with scales, it is generally
recommended to use logarithmic interpolation. One simple example of the
different behavior is explained trying to find the answer for:

interpolation(a = 0.5, b = 2, f = 0.5)

Linear interpolation would give us:

lerp(a, b, f) = a+ (b− a) · f

19

lerp(0.5, 2, 0.5) = 0.5 + (2− 0.5) · 0.5 = 1.25

And this makes sense if we were to plot a point in between a and b, but
from a scaling perspective is this what we really want ?. Rephrasing the
question to our needs it asks for the mean value between an image that
is half the size of the original one and one that is double the size of
the original one. Obviously the common answer to this question is ”the
original size”, this is where logarithmic interpolation comes in our help:

loginterp(x, y, f) = xf · y1−f

loginterp(0.5, 2, 0.5) = 0.51/2 · 21/2 =
√

0.5 ·
√

2 = 1

The f factor is calculated from the starting and ending aspect ratio (ar
stands for aspect ratio):

f = (arstart − armin)/(armax − armin)

Once every single new spacing has been found we need to transform them
to Normalized Device Coordinates (shifted by 1) by:

∀spacing : spacing = spacings · 2/
n=gridcells∑

n=1

spacings[n]

The 2 is because NDCs range from −1 to 1 and when setting the vertex
coordinates we incrementally add them starting from −1. After all the
vertex positions have been updated we upload them to GPU and call gl.
drawElements, the index buffer obviously is subject to no modifications.

20

4 Tools and Workflow

In this section a sample workflows that goes from a standard wepage without any
retargeting to a retargerted web page will be presented. The image has been
taken from [20] and chosen explicitly to show how this retargeting technique
works well even if there are multiple subjects in the scene. The following code
listing creates a simple page with an image and text on the right (as the image
floats left). The image will obviously stretch and will be unpleasant to view
after a certain window’s width.

<html>
<head>
<style>
<!-- Inline CSS -->
.test {

width: 50%;
height: 200px;
float: left;
border: 20px solid white;

}
body{
font-size: 20px;
}
h1{
font-size: 40px;
}
</style>
</head>
<body>
<h1>Example Page</h1>
<!-- Image -->

<!-- Text -->
Lorem ipsum dolor sit amet, <!-- Insert sample quote -->... consequat.
</body>
</html>

The original resolution of the picture in 1000x668 (3) and the screen-shot has
been taken while being viewed fullscreen on a 1920x1080 display.

The first step in enabling the image to be retargeted is to define a saliency
map for it. If the user prefers he can use any kind of automatic saliency genera-
tor, here we will define a saliency map created manually. We will use GIMP for
the job as it is completely free and open source, but the same can be achieved
with any other image editing tools. First the image is loaded in the workspace
and a layer for it will be created. Then a second layer is created on top of the
first one (possibly transparent), this allows the user to paint the saliency map
directly on top of the image, thus being able to see exactly what regions of the
image we are painting. Now, using any kind of brush, does not have to be hard,
will work with soft ones too, we can just paint over the objects we desire to
preserve in the newly created layer. In our example we painted over the horses
as they are the focus of the picture:

Once this is done, the upper layer should be exported. What kind of back-

21

Figure 3: Original picture with preserved aspect ratio.

Figure 4: Test web page without any retargeting applied.

Figure 5: Close-up of the stretched picture.

22

Figure 6: Screenshot of GIMP while editing the saliency map.

ground or transparency has been chosen does not really matter. What is im-
portant in the end is the value in the R channel (as multiple channels are not
needed), as a matter of fact having chosen a grey scale image or setting the
brush color to RGB(255, 0, 0) would have produced the same result. The out-
put format of the upper layer does not matter either, as long as it is one of the
common ones including PNG, JPG, BMP, etc.. Once exported in its own file
the saliency map and the original color map have to be merged together. In
a future scenario this would be done directly from the image program using a
custom plug-in. As it stands now, making sure the executable and the image
are in the same directory, the following command can be run:

retarget-make -s"saliency.png" -i"color.png" -o"retarget_color.png"

This assumes that the saliency map is saved as saliency.png and the color map
was called color.png, names can be changed if it is not the case. If no -o is
specified the input color file will be overwritten.

The great advantage of having implemented everything as a frontend JavaScript
library comes into play exactly here. In order to enable retargeting in your page
all there is to do is include the script at the end of the body in the HTML page.
Hot-linking the script will be added using public hosting services.

<script src="../retarget-js/retarget.js"></script>

The metadata does not corrupt the image in any way, it is still perfectly valid,
usable in the same contexts and correctly readable by all the image viewers.
Once by the web browser two things will happen:

• All images that have metadata in them will be retargeted by default.
This behavior has been chosen in order to minimize the amount of work

23

Figure 7: Web page with retarget-js linked.

Figure 8: Close-up of the image.

the web designer has to do, adding a custom tag to all the images in a
web page (even if auto-generated) is a too expensive time-wise.

• Behavior can be also manually controlled by the data-retarget attribute,
whose values can be true or false. In the former case the image will be
retargeted, as default behavior, in the latter the script will explicitly skip
the image in question.

In order to get more information on the process useful information is logged
by default in the browser’s console. Setting Retarget.logging_enable = false

will disable such feature. Once the script has been included the retargeted image
should be correctly displayed as in Figure 7. In the following pages a collection
of web pages with retarget-js embedded can be found.

24

Figure 9: Wikipedia page with retargeting applied to it. Tweaked only to allow
for stretching in order to show how retargeting works.

25

Figure 10: Comparison of the test web page at different resolutions. Left is
default, Right is retargeted using our script.

26

5 Conclusions and further improvements

The purpose of this project was to show how retargeting techniques are ready
to be used in the real world and give a basic toolkit for such purpose. In its
current form there are many features that are missing, starting from [13] that
also proposed:

• Laplacian regularization in order to smooth the deformation results across
the image.

• Cubic B-spline interpolation to help the process of up-scaling the low
resolution grid.

• Cropping could be enabled by simply setting Lw and Lh to 0, thus giving
the user more access to the retarget parameters.

• Grid resolution could be changed depending on the image to either save
memory and processing by reducing the resolution or improving quality
at higher resolutions by increasing the grid’s density.

Additionally, the saliency map is currently exclusively provided by the user, but
giving an option to automatically generate one would be helpful if the image
database was to be considerably big. The clear advantage of this system, as
already mentioned, is that the offline processing is almost entirely decoupled
from the rendering. Thus any kind of offline tool and algorithm could be used
to generate the spacings without having to modify the frontend.

Tweaking the JavaScript library would be needed only if different retarget
functions, non axis-aligned mesh based for instance, were to be used but, as
simple as [13] is, it is robust and provides high quality results at the same
time. The perfect scenario for retargeting is inside web browsers and we hope
that our implementation will bring more attention to this already very powerful
technology.

27

References

[1] V. Setlur, S. Takagi, R. Raskar, M. Gleicher, and B. Gooch, “Automatic
image retargeting”, in Proceedings of the 4th International Conference
on Mobile and Ubiquitous Multimedia, ser. MUM ’05, Christchurch, New
Zealand: ACM, 2005, pp. 59–68, isbn: 0-473-10658-2. doi: 10.1145/
1149488.1149499. [Online]. Available: http://doi.acm.org/10.
1145/1149488.1149499.

[2] S. Avidan and A. Shamir, “Seam carving for content-aware image resiz-
ing”, ACM Trans. Graph., vol. 26, no. 3, Jul. 2007, issn: 0730-0301. doi:
10.1145/1276377.1276390. [Online]. Available: http://doi.acm.
org/10.1145/1276377.1276390.

[3] C. Hecker, B. Raabe, R. W. Enslow, J. DeWeese, J. Maynard, and K. van
Prooijen, “Real-time motion retargeting to highly varied user-created mor-
phologies”, in Proceedings of ACM SIGGRAPH ’08, http://chrishecker.
com/Real-time_Motion_Retargeting_to_Highly_Varied_
User-Created_Morphologies, 2008.

[4] M. Rastegari and N. Gheissari, “Multi-scale cartoon motion capture and
retargeting without shape matching”, in Proceedings of the 2008 Digital
Image Computing: Techniques and Applications, ser. DICTA ’08, Wash-
ington, DC, USA: IEEE Computer Society, 2008, pp. 320–326, isbn: 978-
0-7695-3456-5. doi: 10.1109/DICTA.2008.51. [Online]. Available:
http://dx.doi.org/10.1109/DICTA.2008.51.

[5] M. Rubinstein, A. Shamir, and S. Avidan, “Improved seam carving for
video retargeting”, ACM Trans. Graph., vol. 27, no. 3, 16:1–16:9, Aug.
2008, issn: 0730-0301. doi: 10.1145/1360612.1360615. [Online].
Available: http://doi.acm.org/10.1145/1360612.1360615.

[6] Y.-S. Wang, C.-L. Tai, O. Sorkine, and T.-Y. Lee, “Optimized scale-and-
stretch for image resizing”, ACM Trans. Graph., vol. 27, no. 5, 118:1–
118:8, Dec. 2008, issn: 0730-0301. doi: 10.1145/1409060.1409071.
[Online]. Available: http://doi.acm.org/10.1145/1409060.
1409071.

[7] P. Krähenbühl, M. Lang, A. Hornung, and M. Gross, “A system for re-
targeting of streaming video”, ACM Trans. Graph., vol. 28, no. 5, 126:1–
126:10, Dec. 2009, issn: 0730-0301. doi: 10.1145/1618452.1618472.
[Online]. Available: http://doi.acm.org/10.1145/1618452.
1618472.

[8] G.-X. Zhang, M.-M. Cheng, S.-M. Hu, and R. R. Martin, “A shape-
preserving approach to image resizing”, Computer Graphics Forum, 2009,
issn: 1467-8659. doi: 10.1111/j.1467-8659.2009.01568.x.

[9] D. Freedman, R. Chen, Z. Karni, C. Gotsman, and L. Liu, “Content-
aware image resizing by quadratic programming”, The 3rd Workshop on
Non-Rigid Shape Analysis and Deformation Image Alighment, 2010.

28

http://dx.doi.org/10.1145/1149488.1149499
http://dx.doi.org/10.1145/1149488.1149499
http://doi.acm.org/10.1145/1149488.1149499
http://doi.acm.org/10.1145/1149488.1149499
http://dx.doi.org/10.1145/1276377.1276390
http://doi.acm.org/10.1145/1276377.1276390
http://doi.acm.org/10.1145/1276377.1276390
http://chrishecker.com/Real-time_Motion_Retargeting_to_Highly_Varied_User-Created_Morphologies
http://chrishecker.com/Real-time_Motion_Retargeting_to_Highly_Varied_User-Created_Morphologies
http://chrishecker.com/Real-time_Motion_Retargeting_to_Highly_Varied_User-Created_Morphologies
http://dx.doi.org/10.1109/DICTA.2008.51
http://dx.doi.org/10.1109/DICTA.2008.51
http://dx.doi.org/10.1145/1360612.1360615
http://doi.acm.org/10.1145/1360612.1360615
http://dx.doi.org/10.1145/1409060.1409071
http://doi.acm.org/10.1145/1409060.1409071
http://doi.acm.org/10.1145/1409060.1409071
http://dx.doi.org/10.1145/1618452.1618472
http://doi.acm.org/10.1145/1618452.1618472
http://doi.acm.org/10.1145/1618452.1618472
http://dx.doi.org/10.1111/j.1467-8659.2009.01568.x

[10] F. Banterle, A. Artusi, T. Aydin, P. Didyk, E. Eisemann, D. Gutier-
rez, R. Mantiuk, and K. Myszkowski, “Multidimensional image retarget-
ing”, in ACM Siggraph ASIA 2011 Courses, ser. ACM Siggraph ASIA,
ACM, Dec. 2011. [Online]. Available: http://vcg.isti.cnr.it/
Publications/2011/BAADEGMM11.

[11] M.-M. Cheng, G.-X. Zhang, N. J. Mitra, X. Huang, and S.-M. Hu, “Global
contrast based salient region detection”, in Proceedings of the 2011 IEEE
Conference on Computer Vision and Pattern Recognition, ser. CVPR ’11,
Washington, DC, USA: IEEE Computer Society, 2011, pp. 409–416, isbn:
978-1-4577-0394-2. doi: 10 . 1109 / CVPR . 2011 . 5995344. [Online].
Available: http://dx.doi.org/10.1109/CVPR.2011.5995344.

[12] S. Goferman, L. Zelnik-Manor, and A. Tal, “Context-aware saliency detec-
tion”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 10, pp. 1915–
1926, Oct. 2012, issn: 0162-8828. doi: 10.1109/TPAMI.2011.272.
[Online]. Available: http://dx.doi.org/10.1109/TPAMI.2011.
272.

[13] D. Panozzo, O. Weber, and O. Sorkine, “Robust image retargeting via
axis-aligned deformation”, Comput. Graph. Forum, vol. 31, no. 2pt1, pp. 229–
236, May 2012, issn: 0167-7055. doi: 10.1111/j.1467-8659.2012.
03001.x. [Online]. Available: http://dx.doi.org/10.1111/j.
1467-8659.2012.03001.x.

[14] C.-K. Huang, Y.-L. Chen, I.-C. Shen, and B.-Y. Chen, “Retargeting 3d
objects and scenes with a general framework”, Computer Graphics Forum,
2016, issn: 1467-8659. doi: 10.1111/cgf.13001.

[15] [Online]. Available: https://github.com/mozilla/gecko-dev/
blob/master/image/Downscaler.cpp.

[16] [Online]. Available: https://trac.webkit.org/wiki/FTLJIT.

[17] [Online]. Available: https://developer.mozilla.org/en-US/
docs/Web/Security/Same-origin_policy.

[18] [Online]. Available: http://www.adobe.com/products/xmp.html.

[19] [Online]. Available: https://developer.mozilla.org/en/docs/
Web/Events/DOMContentLoaded.

[20] [Online]. Available: http://publicdomainarchive.com.

29

http://vcg.isti.cnr.it/Publications/2011/BAADEGMM11
http://vcg.isti.cnr.it/Publications/2011/BAADEGMM11
http://dx.doi.org/10.1109/CVPR.2011.5995344
http://dx.doi.org/10.1109/CVPR.2011.5995344
http://dx.doi.org/10.1109/TPAMI.2011.272
http://dx.doi.org/10.1109/TPAMI.2011.272
http://dx.doi.org/10.1109/TPAMI.2011.272
http://dx.doi.org/10.1111/j.1467-8659.2012.03001.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03001.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03001.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03001.x
http://dx.doi.org/10.1111/cgf.13001
https://github.com/mozilla/gecko-dev/blob/master/image/Downscaler.cpp
https://github.com/mozilla/gecko-dev/blob/master/image/Downscaler.cpp
https://trac.webkit.org/wiki/FTLJIT
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
http://www.adobe.com/products/xmp.html
https://developer.mozilla.org/en/docs/Web/Events/DOMContentLoaded
https://developer.mozilla.org/en/docs/Web/Events/DOMContentLoaded
http://publicdomainarchive.com

	Retargeting of visual media
	Different types of retargeting
	Images
	Current direction and state of the art

	Axis-aligned image retargeting
	Introduction
	Inner workings
	Energy systems
	Why and how we used it

	Implementation
	Approaches
	Backend: retarget-lib
	Backend: retarget-make
	Frontend: retarget-js

	Tools and Workflow
	Conclusions and further improvements

